用于图像着色的五个开源Python工具
2022-10-08 15:50:20来源:不靠谱的猫
成千上万的老式照片和电影是在彩色图像还没有出现的年代拍摄的。如今,在深度学习的帮助下,我们可以为这些图片着色,使它们更接近原来的样子。
作为测试,我将使用两张图像。
本文将使用开源工具,这些工具可以从GitHub下载。
(资料图)
DeOldifyDeOldify是基于SA-GAN (Self-Attention - generate对抗网络)。一般来说,GAN由两个独立的神经网络组成——生成器和判别器。这两个网络都是由大量的图像训练而成,在训练过程中,生成器学会了制作似是而非的图像,而判别器学会将生成的图像与真实的图像区分开来。
为了在本地运行DeOldify,我们需要从GitHub中获取项目,并将预训练好的神经网络权重下载到“models”文件夹中(链接来自项目页面,未来作者可能会更改):
git clone https://github.com/jantic/DeOldifycd DeOldifymkdir modelscd modelswget https://data.deepai.org/deoldify/ColorizeArtistic_gen.pthwget https://www.dropbox.com/s/usf7uifrctqw9rl/ColorizeStable_gen.pth?dl=1 -O ColorizeStable_gen.pthcd ..
在这里,我将“device”设置为CPU - 如果您没有好的显卡,则很可能会收到“内存不足”错误(CPU上的处理时间约为3-5s,GPU上的处理时间约为0.5s,因此CPU计算也运行良好)。如果您希望运行独立的Python代码,则可以使用以下Python代码:
from deoldify import devicefrom deoldify.device_id import DeviceIdfrom deoldify.visualize import *torch.backends.cudnn.benchmark=Truedevice.set(device=DeviceId.CPU)colorizer = get_image_colorizer(artistic=True)img_out = colorizer.get_transformed_image(path="anna_bw.jpg", render_factor=15, watermarked=True)img_out.save("anna_color.jpg")
至于结果,相当不错:
大家还可以尝试更改模型(有两种模型,具有更鲜艳颜色的“artistic”模型和“stable”模型可用)和影响输出颜色的“render_factor”变量。要去除水印可以将参数watermarked设置为False。
彩色图像着色(Colorful Image Colorization)这个项目使用卷积神经网络(CNN)来生成彩色图像。在体系结构上,它比DeOldify简单得多,但正因为如此,它可能更方便大家理解它的工作原理。
最后一次项目更新是在2020年,但代码仍然可以工作,并且可以很容易地在本地运行。
有两种模型可用,Python代码如下:
import colorizers as cimport torchimport matplotlib.image as pltimg = c.load_img("image_bw.jpg")tens_l_orig, tens_l_rs = c.preprocess_img(img, HW=(256, 256))img_bw = c.postprocess_tens(tens_l_orig, torch.cat((0*tens_l_orig, 0*tens_l_orig), dim=1))colorizer_eccv16 = c.eccv16(pretrained=True).eval()out_img_eccv16 = c.postprocess_tens(tens_l_orig, colorizer_eccv16(tens_l_rs).cpu())plt.imsave("image_eccv16.jpg", out_img_eccv16)colorizer_siggraph17 = c.siggraph17(pretrained=True).eval()out_img_siggraph17 = c.postprocess_tens(tens_l_orig, colorizer_siggraph17(tens_l_rs).cpu())plt.imsave("image_siggraph17.jpg", out_img_siggraph17)
结果如下:
ChromaGAN顾名思义,ChromaGAN的作者也在使用生成对抗网络给图像上色。
这个项目可能只是作为研究的一个演示,操作并不是太友好。在使用项目之前,应下载“my_model_colorization.h5”文件(链接在GitHub页面上提供)并放入“MODEL”文件夹中。源图像和输出图像应该分别放在“chromagan_images”和“chromagan_results”文件夹中,然后可以参考作者jupyter notebook进行处理。要在本地PC上运行代码,“from google.colab.patches import cv2_imshow”和“cv2_imshow(…)”行应该删除。该项目正在使用Keras,如果出现“内存不足”的错误,建议在文件开头添加os.environ["CUDA_VISIBLE_DEVICES"] = "-1"。
Google Colorization Transformer (ColTran)这个项目可以从google-research GitHub页面下载,更详细的研究论文也可以下载。作者使用的是具有自注意力架构的轴向transformer,而不是GAN。在使用ColTran之前,我们需要下载预训练模型,这些模型位于ColTran.zip归档文件中。该归档文件包含3个模型检查点:colorizer、color_upsampler和spatial_upsampler。然后我们可以运行3个Python命令:
python3 custom_colorize.py --config=configs/colorizer.py --mode=colorize --accelerator_type=CPU --logdir=colorizer --img_dir=img_dir --store_dir=target_dirpython3 custom_colorize.py --config=configs/color_upsampler.py --mode=colorize --accelerator_type=CPU --logdir=color_upsampler --img_dir=img_dir --store_dir=target_dir --gen_data_dir=target_dir/stage1 --mode=colorizepython3 custom_colorize.py --config=configs/spatial_upsampler.py --mode=colorize --accelerator_type=CPU --logdir=spatial_upsampler --img_dir=img_dir --store_dir=target_dir --gen_data_dir=target_dir/stage2
这里的img_dir是一个文件夹,包含源图像,store_dir是输出文件夹,colorize是一种处理模式,而logdir是到预训练模型的路径。我们有3个处理步骤:我们有3个处理步骤:“colorizer”只使用512种输出颜色和64x64的输出图像进行粗着色,“color upsampler”改善颜色,“spatial upsampler”将图像提升到256x256的分辨率。
结果是颜色也很准确:
这个工具可能只是作为研究论文的演示而制作的,与以前的项目相比,没有现成的方法来处理任意分辨率的图像。输出仅限于 256x256 大小。
BigColorBigColor项目是由作者在2022年提出的。作者还在他们的论文中写道:“我们将BigColor与最近的自动着色方法进行了比较,包括CIC、ChromaGAN、DeOldify、InstColor、ColTran和ToVivid。在六张具有挑战性的图像上,BigColor的优于所有方法。”
该项目本身可以从GitHub页面下载(https://github.com/KIMGEONUNG/BigColor)。使用代码很简单。在进行转换之前,应该执行两个脚本download- pretraining.sh和download-bigcolor.sh。之后,可以使用一个命令完成转换:
python3 colorize_real.py --path_ckpt=ckpts/bigcolor --path_input=images_gray --epoch=11 --type_resize=powerof --seed=-1 --device=cpu
此处的path_ckpt是指向预训练模型的路径,images_gray是包含源图像的文件夹。结果如下:
最后图像着色是一个有趣的话题,正如我们所看到的,不同的方法和架构是可能的。从准确性的角度来看,事情也很复杂。通常,黑白照片不再有颜色信息,因此神经网络只能根据之前训练的图像来猜测输出结果。例如,这是我用来测试的原始图像:
这是相同的图像,转换为黑白:
这是使用DeOldify制作的图像:
树是绿色的,天空是蓝色的,这已经挺不错了。但是,不仅DeOldify,而且其他经过测试的项目都无法正确确定百叶窗的颜色。在大多数情况下,这些结果已经足够好了。