服务容错:服务雪崩与容错方案
2022-04-29 14:26:35来源:冰河技术
当一个系统的架构设计采用微服务架构模式时,会将庞大而复杂的业务拆分成一个个小的微服务,各个微服务之间以接口或者RPC的形式进行互相调用。在调用的过程中,就会涉及到网路的问题,再加上微服务自身的原因,例如很难做到100%的高可用等。
如果众多微服务当中的某个或某些微服务出现问题,不可用或者宕机了,那么其他微服务调用这些微服务的接口时就会出现延迟。如果此时有大量请求进入系统,就会造成请求任务的大量堆积,甚至会造成整体服务的瘫痪。
压测说明为了更加直观的说明当系统没有容错能力时,高并发、大流量场景对于系统的影响,我们在这里模拟一个并发的场景。在订单微服务shop-order的io.binghe.shop.order.controller.OrderController类中新增一个concurrentRequest()方法,源码如下所示。
@GetMapping(value = "/concurrent_request")public String concurrentRequest(){ log.info("测试业务在高并发场景下是否存在问题"); return "binghe";}
接下来,为了更好的演示效果,我们限制下Tomcat处理请求的最大并发数,在订单微服务shop-order的resources目录下的application.yml文件中添加如下配置。
server: port: 8080 tomcat: max-threads: 20
限制Tomcat一次最多只能处理20个请求。接下来,我们就使用JMeter对 http://localhost:8080/order/submit_order 接口进行压测,由于订单微服务中没有做任何的容错处理,当对 http://localhost:8080/order/submit_order 接口的请求压力过大时,我们再访问http://localhost:8080/order/concurrent_request 接口时,会发现http://localhost:8080/order/concurrent_request 接口会受到并发请求的影响,访问很慢甚至根本访问不到。
压测实战使用JMeter对 http://localhost:8080/order/submit_order 接口进行压测,JMeter的配置过程如下所示。
(1)打开JMeter的主界面,如下所示。
(2)在JMeter中右键测试计划添加线程组,如下所示。
(3)在JMeter中的线程组中配置并发线程数,如下所示。
如上图所示,将线程数配置成50,Ramp-Up时间配置成0,循环次数为100。表示JMeter每次会在同一时刻向系统发送50个请求,发送100次为止。
(4)在JMeter中右键线程组添加HTTP请求,如下所示。
(5)在JMeter中配置HTTP请求,如下所示。
具体配置如下所示。
协议:http服务器名称或IP:localhost端口号:8080方法:GET路径:/order/submit_order?userId=1001&productId=1001&count=1内容编码:UTF-8(6)配置好JMeter后,点击JMeter上的绿色小三角开始压测,如下所示。
点击后会弹出需要保存JMeter脚本的弹出框,根据实际需要点击保存即可。
点击保存后,开始对 http://localhost:8080/order/submit_order 接口进行压测,在压测的过程中会发现订单微服务打印日志时,会比较卡顿,同时在浏览器或其他工具中访问http://localhost:8080/order/concurrent_request 接口会卡顿,甚至根本访问不到。
说明订单微服务中的某个接口一旦访问的并发量过高,其他接口也会受到影响,进而导致订单微服务整体不可用。为了说明这个问题,我们再来看看服务雪崩是个什么鬼。
服务雪崩系统采用分布式或微服务的架构模式后,由于网络或者服务自身的问题,一般服务是很难做到100%高可用的。如果一个服务出现问题,就可能会导致其他的服务级联出现问题,这种故障性问题会在整个系统中不断扩散,进而导致服务不可用,甚至宕机,最终会对整个系统造成灾难性后果。
为了最大程度的预防服务雪崩,组成整体系统的各个微服务需要支持服务容错的功能。
服务容错方案服务容错在一定程度上就是尽最大努力来兼容错误情况的发生,因为在分布式和微服务环境中,不可避免的会出现一些异常情况,我们在设计分布式和微服务系统时,就要考虑到这些异常情况的发生,使得系统具备服务容错能力。
常见的服务错误方案包含:服务限流、服务隔离、服务超时、服务熔断和服务降级等。
服务限流服务限流就是限制进入系统的流量,以防止进入系统的流量过大而压垮系统。其主要的作用就是保护服务节点或者集群后面的数据节点,防止瞬时流量过大使服务和数据崩溃(如前端缓存大量实效),造成不可用;还可用于平滑请求。
限流算法有两种,一种就是简单的请求总量计数,一种就是时间窗口限流(一般为1s),如令牌桶算法和漏牌桶算法就是时间窗口的限流算法。
服务隔离服务隔离有点类似于系统的垂直拆分,就按照一定的规则将系统划分成多个服务模块,并且每个服务模块之间是互相独立的,不会存在强依赖的关系。如果某个拆分后的服务发生故障后,能够将故障产生的影响限制在某个具体的服务内,不会向其他服务扩散,自然也就不会对整体服务产生致命的影响。
互联网行业常用的服务隔离方式有:线程池隔离和信号量隔离。
服务超时整个系统采用分布式和微服务架构后,系统被拆分成一个个小服务,就会存在服务与服务之间互相调用的现象,从而形成一个个调用链。形成调用链关系的两个服务中,主动调用其他服务接口的服务处于调用链的上游,提供接口供其他服务调用的服务处于调用链的下游。
服务超时就是在上游服务调用下游服务时,设置一个最大响应时间,如果超过这个最大响应时间下游服务还未返回结果,则断开上游服务与下游服务之间的请求连接,释放资源。
服务熔断在分布式与微服务系统中,如果下游服务因为访问压力过大导致响应很慢或者一直调用失败时,上游服务为了保证系统的整体可用性,会暂时断开与下游服务的调用连接。这种方式就是熔断。
服务熔断一般情况下会有三种状态:关闭、开启和半熔断。
关闭状态:服务一切正常,没有故障时,上游服务调用下游服务时,不会有任何限制。开启状态:上游服务不再调用下游服务的接口,会直接返回上游服务中预定的方法。半熔断状态:处于开启状态时,上游服务会根据一定的规则,尝试恢复对下游服务的调用。此时,上游服务会以有限的流量来调用下游服务,同时,会监控调用的成功率。如果成功率达到预期,则进入关闭状态。如果未达到预期,会重新进入开启状态。服务降级服务降级,说白了就是一种服务托底方案,如果服务无法完成正常的调用流程,就使用默认的托底方案来返回数据。例如,在商品详情页一般都会展示商品的介绍信息,一旦商品详情页系统出现故障无法调用时,会直接获取缓存中的商品介绍信息返回给前端页面。